The tree diagram has been the major means for expressing genetic relationships among languages in the field of Historical Linguistics. The model appears to efficiently reflect the results of the Comparative Method, the traditional method applied to clarify the genetic relationship of languages. At the same time, however, it has long been recognized that there are certain aspects of language change that cannot be expressed using the tree diagram, with contact relationship and the position of “hybrid” languages (such as creole languages) being the representative of all. Recently, as new notions such as “dialect linkage” has been introduced, and many more detailed synchronic descriptions of languages have become available, linguists have started to suffer more strongly from the limitations that the tree diagram imposes, and attempts are now seen to “remedy” the situation by, for example, inserting a different diagram into the tree diagram, or to completely replace and/or supplement the tree diagram with something else.

In my presentation, I will first describe the above mentioned situation with specific examples from the Austronesian language family. Then, I will present my view towards a better relationship between linguists and the tree diagram. I will argue in particular that problems exist in the fact that the tree diagram is often treated as the only diagram in historical linguistics, while it is in fact one of many that linguists could and should choose from, according to what they want to express with a diagram. Thus, it is necessary for us to be aware of the limitations of a tree diagram, and what a tree diagram implicaties and what the advantages are in using such a model. The same cautions also apply to the use of other diagram(s). In this line, I consider that the tree diagram is and will be most suitable when it is modeling long-distance relationships among languages that are examined with relatively deep time depth. The more detailed the data to which the comparative method is applied, the number of factors that
are not well-handled by a tree model multiplies, and the necessity of using a different model(s) becomes stronger.